1. Family: Fabaceae Lindl.
    1. Myroxylon L.f.

      1. This genus is accepted, and its native range is Mexico to S. Tropical America.

    [KBu]

    Sartori, Â.L.B., Lewis, G.P., de Freitas Mansano, V. et al. 2015. A revision of the genus Myroxylon (Leguminosae: Papilionoideae)Kew Bulletin 70: 48. DOI https://doi.org/10.1007/s12225-015-9604-7

    Type
    Type: Myroxylon peruiferum L. f.
    Habit
    Tree
    Branches
    Branches terete, lenticellate, stipules caducous
    Leaves
    Leaves imparipinnate, to 15-foliolate; petiole flattened, rough; rachis square or terete in cross section, sulcate on the adaxial surface; petiolules wrinkled, leaflets alternate, venation brochidodromous, pellucid gland dots and streaks conspicuous in the leaflet blades (on herbarium specimens and in the field these are best seen when a leaflet is held up to the light)
    Inflorescences
    Racemes axillary and/or terminal; a bract inserted at the base of the pedicel; minute bracteoles inserted at the base of the calyx, caducous; calyx campanulate, 5-lobed (the lobe apices obtuse) or the lobes obsolete; the sub-papilionaceous flowers spirally arranged along the inflorescence axis, petals white; standard petal with a greenish central blotch; stamens 10 (5 longer), all united at base, filaments and anthers glabrous, anthers dorsifixed, oblong, apiculate, sagittate, dehiscence longitudinal; gynoecium uniovulate, glabrous, stipitate, stigma punctiform
    Fruits
    Fruit a 1-seeded samara, wing proximal, veins crowded submedially, seed-chamber distal; testa smooth or rough.
    [LOWO]

    Legumes of the World. Edited by G. Lewis, B. Schrire, B. MacKinder & M. Lock. Royal Botanic Gardens, Kew. (2005)

    Habit
    Trees
    Ecology
    Tropical lowland rain forest to seasonally dry forest and woodland
    Distribution
    Mexico, C America; western and northern S America to N Argentina
    Note
    For relationships see notes under Myrospermum

    In Polhill’s (1994) treatment the following informal groups were recognised: the Myroxylon group (11 genera; 10 Neotropics, one Africa); Ormosia group (3 genera; Neotropics, Africa, Asia); Angylocalyx group (4 genera; Neotropics, Africa, Australia); Baphia group (6 genera; Africa to Asia); Dussia group (9 genera; Neotropics) and Sophora group (14 genera; Africa, Asia, Neotropics).

    The only formal change made to the classification of Sophoreae since Polhill (1994) is the transfer of Bowringia and Baphiastrum to Leucomphalos (Breteler, 1994b). In this account we maintain Bowringia and Baphiastrum, not because we disagree with Breteler (1994b), but in the spirit of this volume, to encourage future workers to verify the monophyly of Leucomphalos sens. lat. with new data. We also do not follow Polhill’s (1994) suggestion that Riedeliella, Etaballia and Inocarpus belong in Sophoreae. It has been generally accepted (e.g., Polhill, 1981b) that these belong in Dalbergieae, which is confirmed by the recent study of Lavin et al. (2001a) that places them in the Dalbergioid clade. They are therefore treated as Dalbergieae in this volume (see page 307).

    Cladistic analyses of overall morphology (Chappill, 1995; Herendeen, 1995) and pollen data (Ferguson et al., 1994) showed Sophoreae to be non-monophyletic because Swartzieae genera were mixed in the same monophyletic groups as Sophoreae. These results have been corroborated by molecular studies. Doyle et al. (1996) showed Sophoreae to be heterogeneous for a large inversion in the chloroplast genome. This suggests that Sophoreae is non-monophyletic if it is assumed that the inversion arose only once. Doyle et al.’s (1997) DNA sequencing study of the chloroplast gene rbcL included 18 genera of Sophoreae. Cladistic analysis showed these to be scattered widely across the papilionoid tree. More recently, these results have been corroborated by another chloroplast locus, the trnL intron (Pennington et al., 2001). This study sampled more putatively basal genera of Papilionoideae (26 of 41 Sophoreae; 14 of 15 Swartzieae and all Dalbergieae and Dipterygeae). The trnL tree (summarised in Fig. 29) is also largely congruent with other molecular studies that include some taxa of basal Papilionoideae (e.g., Hu et al., 2000; Ireland et al, 2000; Lavin et al., 2001a; Kajita et al., 2001; Wojciechowski et al., 2004). It clearly shows genera of Sophoreae to be members of disparate papilionoid clades.

    Diverse datasets now indicate Sophoreae to be non-monophyletic as Polhill (1981b; 1994) predicted. If the trnL results are corroborated, it seems likely that Sophoreae will be dismembered with its genera scattered across several tribes. This would entail extensive taxonomic changes. Yakovlev (1972b; 1991) split Sophoreae into five and nine tribes respectively. These classifications have not been widely accepted, and although they are not congruent with the most recent molecular topologies, they will need to be considered in any formalisation of new tribal names. In any new scheme, Sophoreae sens. strict. will comprise a group of genistoid clade genera from among Polhill’s (1994) Sophora group (Fig. 29), but published molecular phylogenetic studies have not yet sampled sufficient genera to suggest its delimitation.

    A new classification for Sophoreae requires sampling of the genera not included by Pennington et al. (2001; see Fig. 29) and other authors, in future molecular systematic studies. Some of the clades discovered by DNA sequence data (Fig. 29) are cryptic in that they are not marked by obvious macro-morphological features, and it is therefore perilous to attempt to determine the affinities of genera based upon macro-morphology alone. It may be that these clades are defined by anatomical or chemical characters. For example, quinolizidine alkaloid accumulation may be a synapomorphy for the Genistoid clade (Pennington et al., 2001; Kite & Pennington, 2003), and lack of these chemicals in Styphnolobium species supports the segregation of this genus from Sophora sens. strict. The presence of quinolizidine alkaloids in Calia, which is not placed amongst the genistoids, suggests that this genus is a strong candidate as sister group to the Genistoid clade, a relationship that might be resolved by more robust molecular phylogenies. Such phylogenies should incorporate information from nuclear genes (Lavin et al., 1998; Doyle & Doyle, 2000) which would be particularly useful to test hypotheses that are currently based solely upon evidence from chloroplast DNA. Careful integration of morphology, preferably as part of a simultaneous cladistic analysis, is also critical. Such morphological study may be best achieved by focusing on separate monophyletic groups because assessment of homology of morphological features across all Papilionoideae is difficult. The monophyletic groups discovered in the trnL analysis provide a framework for starting these future studies. In all 45 genera and (393) – 396 – (398) species are treated here (including c. 76 basally branching, c. 262 genistoid and c. 58 baphioid species of Sophoreae; Fig. 29).

    [LOWO]
    Use
    Used for timber (furniture, turnery, interior trim and construction); balsam extraction for medicine, perfumery, thickening agents, etc. (cultivated in e.g., Sri Lanka and W Africa)

    Images

    Distribution

    Native to:

    Argentina Northwest, Belize, Bolivia, Brazil North, Brazil Northeast, Brazil South, Brazil Southeast, Brazil West-Central, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Guyana, Honduras, Mexico Central, Mexico Gulf, Mexico Northeast, Mexico Northwest, Mexico Southeast, Mexico Southwest, Nicaragua, Panamá, Peru, Venezuela

    Introduced into:

    Cuba, Dominican Republic, Florida, Gabon, Ghana, India, Jawa, Puerto Rico, Sierra Leone, Sri Lanka, Tanzania, Trinidad-Tobago, Uganda, Zaïre

    Myroxylon L.f. appears in other Kew resources:

    First published in Suppl. Pl.: 34 (1782)

    Literature

    Kew Bulletin
    • Cardoso, D., Queiroz, L. P., Pennington, R. T., Lima, H. C., Fonty, E., Wojciechowski, M. F. & Lavin, M. (2012). Revisiting the phylogeny of papilionoid legumes: New insights from comprehensively sampled early-branching lineages. Amer. J. Bot. 99: 1991 – 2013.CrossRefGoogle Scholar
    • McNeill, J. C., Barrie, F. R., Buck, W. R., Demoulin, V., Greuter, W., Hawksworth, D. L., Herendeen, P. S., Knapp, S., Marhold, K., Prado, J., Prud'homme van Reine, W. F., Smith, G. F. & Wiersema, J. H. (2011). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code). Regnum Veg. 154. Koeltz Scientific Books.Google Scholar
    • Pennington, R. T., Stirton, C. H. & Schrire, B. D. (2005). Tribe Sophoreae. In: G. Lewis, B. Schrire, B. Mackinder & M. Lock (eds), Legumes of the world, pp. 227 – 249. Royal Botanic Gardens, Kew.Google Scholar
    • Wojciechowski, M. F., Lavin, M. & Sanderson, M. J. (2004). A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Amer. J. Bot. 91: 1846 – 1862.CrossRefGoogle Scholar
    • Sartori, A. L. B. & Tozzi, A. M. G. (2002). Comparative leaflet anatomy in Myrocarpus Allemão, Myroxylon L.f. and Myrospermum Jacq. (Leguminosae-Papilionoideae-Sophoreae) species. Bot. J. Linn. Soc. 140: 249 – 259.CrossRefGoogle Scholar
    • Doyle, J. J. , Doyle, J. L., Ballenger, J. A., Dickinson, E. E., Kajita, T. & Ohashi, H. (1997). A phylogeny of the chloroplast gene rbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Amer. J. Bot. 84(4): 541 – 554.CrossRefGoogle Scholar
    • Doyle, J. J. (1995). DNA data and legume phylogeny: a progress report. In: M. D. Crisp & J. J. Doyle (eds), Advances in Legume Systematics, part 7, pp. 11 – 30. Royal Botanic Gardens, Kew.Google Scholar
    • Biemer, T. A., Asral, N. & Albanese, J. A. (1992). Simultaneous, stability-indicating capillary gas chromatographic assay for benzocaine and the two principal benzyl esters of Balsamum Peru formulated in a topical ointment. J. Chromatogr. 623: 395 – 398.CrossRefGoogle Scholar
    • Holmgren, P. K., Holmgren, N. H. & Barnett, L. C. (1990). Index Herbariorum, Vol. I: The herbaria of the world. New York Botanical Garden, New York.Google Scholar
    • Linares, E. & Bye Jr., R. A. (1987). A study of four medicinal plant complexes of Mexico and adjacent United States. J. Ethno-pharmacol. 19: 153 – 183.Google Scholar
    • Stafleu, F. A. & Cowan, R. S. (1983). Taxonomic Literature, Vol. 4. W. Junk, Utrecht.Google Scholar
    • Isely, D. (1981). Leguminosae of the United States III, subfamily Papilionoideae; Tribes Sophoreae, Podalyrieae, Loteae. Mem. New York Bot. Gard. 25(3): 1 – 264.Google Scholar
    • Polhill, R. M. (1981). Sophoreae. In: R. M. Polhill & P. H. Raven (eds), Advances in legume systematics part 1, pp. 213 – 230. Royal Botanic Gardens, Kew.Google Scholar
    • Farr, E. R., Leussink, J. A. & Stafleu, F. A. (1979). Index nominum genericorum (Plantarum). Regnum Veg. 100. Scheltema & Holkema, Utrecht, Bohn.Google Scholar
    • Maranduba, A., Oliveira, A. B., Oliveira, G. G. de, Reis, J. E. de P. & Gottlieb, O. R. (1979). Isoflavonoids from Myroxylon peruiferum. Phytochemistry 18: 815 – 817.Google Scholar
    • Radford, A. E., Dickinson, W. C., Massey, J. R. & Bell, C. R. (1974). Vascular plant systematics. Harper & Row, New York.Google Scholar
    • Stearn, W. T. (1973). Botanical Latin. Redwood Press Limited, Trowbridge.Google Scholar
    • Lawrence, G. H. M. (1971). Taxonomy of vascular plants. Macmillan, New York.Google Scholar
    • Rudd, V. E. (1968). Leguminosae of Mexico-Faboideae. I. Sophoreae and Podalyrieae. Rhodora 70: 493 – 532.Google Scholar
    • Stafleu, F. A. (1965). Florae Peruvianae et Chilensis, Vol. 43. Facsimile, J. Cramer, Lehre.Google Scholar
    • Hutchinson, J. (1964). The genera of flowering plants, Vol. 1. Clarendon Press, Oxford.Google Scholar
    • Ruiz, H. & Pavon, J. (1956). Flora Peruviana et Chilensis. Anales Inst. Bot. Cavanilles 14: 717 – 784.Google Scholar
    • Harms, H. (1908). VI Zur nomenclatur des Perubalsambaumes. Notizbl. Königl. Bot. Gart. Berlin 5: 85 – 97.CrossRefGoogle Scholar
    • Baillon, H. (1883). Toluifera balsamum L. Traité de botanique médicale, phanérogamique. 5: 676 – 677. Librairie Hachette et Cie, Paris.Google Scholar
    • Bentley, R. & Trimen, H. (1880a). Toluifera pereirae. Medicinal Plants 42: 83. J. & A. Churchill, London.Google Scholar
    • Bentley, R. & Trimen, H. (1880b). Toluifera balsamum. Medicinal Plants 42: 84. J. & A. Churchill, London.Google Scholar
    • Fluckiger, F. A. & Hanbury, D. (1874). Balsamum tolunatum. Pharmacographia 15: 177 – 184.Google Scholar
    • Baillon, H. (1870). Toluifera L. Histoire des plantes. 2: 369 – 370. Librairie Hachette, Paris.Google Scholar
    • Allemão, F. F. (1857). Leguminosae. Myrospermum erythroxylum. Revista Brazil. 1: 51.Google Scholar
    • Klotzsch, J. F. (1857). Eine synoptische Aufzählung der Arten von Myroxylon Mutis und Myrospermum Jacq. Bonplandia 5: 272 – 277.Google Scholar
    • Oersted, W. (1855). Myrospermum sonsonatense. Vidensk Meddel Naturhist. Foren. Kjöbenhavn: 27 – 32.Google Scholar
    • Royle, J. F. (1853). Myrospermum pereirae. A manual of materia medica and therapeutics 2: 414. John Churchill, London.Google Scholar
    • Pereira, J. (1851). On the Myrospermum of Sonsonate, from which balsamum of Peru, white balsamum and balsamito are obtained. Pharm. J. Trans. 10: 27 – 29.Google Scholar
    • Klotzsch, J. F. (1843). Myroxylon punctatum Klotzsch. In: F. G. Hayne, Getreue Darstellung und Beschreibung der in Arzneykunde Gebrauchlichen Gewachse 14: 12. Auf kosten des verfassers, Berlin.Google Scholar
    • Walpers, W. G. (1843). Myrospermum. Repertorium botanices systematicae 1: 805. Sumtibus Friderici Hofmeister, Lipsiae.Google Scholar
    • de Candolle, A. P. (1825). Leguminosae. In: A. P. Candolle (ed.), Prodromus systematis naturalis regni vegetabilis, Vol. 2, pp. 93 – 423. Treuttel & Würtz, Paris.Google Scholar
    • Kunth, C. S. (1823). Voyage de Humboldt et Bonpland. In: F. H. A. von Humboldt, A. J. A. Bonpland & K. S. Kunth (eds), Nova Genera et Species Plantarum, Vol. 6: 371 – 375, 570 – 571. Facsimile ed. 1963, J. Cramer, Weinheim.Google Scholar
    • Stokes, J. (1812). Myroxylon abruptifolium. A botanical materia medica 2, p. 471. J. Johnson, London.Google Scholar
    • Willdenow, K. (1799). Species plantarum, vol. 2. Impensis G. C. Nauk, Berolini.Google Scholar
    • Lamarck, J. B. A. P. de (1797). Encyclopédie Méthodique. Chez H. Agasse, Paris.Google Scholar
    • (Linnaeus filius 1781: 233).
    • Linnaeus filius, C. (1781). Myroxylon peruiferum. Supplementum Plantarum 34: 232 – 234. Impensis Orphanotrophei, Brunsvigae.Google Scholar
    • Linnaeus, C. (1753). Toluifera balsamum. Species Plantarum ed. I, 1: 383 – 385. Impensis l. Salvii, Holmiae.Google Scholar

    Sources

    Kew Backbone Distributions
    The International Plant Names Index and World Checklist of Selected Plant Families 2019. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
    © Copyright 2017 World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0

    Kew Bulletin
    Kew Bulletin
    http://creativecommons.org/licenses/by-nc-sa/3.0

    Kew Names and Taxonomic Backbone
    The International Plant Names Index and World Checklist of Selected Plant Families 2019. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
    © Copyright 2017 International Plant Names Index and World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0

    Legumes of the World Online
    http://creativecommons.org/licenses/by-nc-sa/3.0