Skip to main content
This species is accepted, and its native range is Central Kenya.

[KBu]

Darbyshire, I., Kiel, C.A., Daniel, T.F. et al. (2019). Two new genera of Acanthaceae from tropical Africa. Kew Bulletin 74: 39. https://doi.org/10.1007/s12225-019-9828-z

Conservation
Darbyshire et al. (2010) considered this species to be Near Threatened (NT) based on its very restricted range (the EOO is approx. 3050 km2), with few collections known, and with potential loss of habitat due to expansion of agriculture. It can be locally frequent to abundant in suitable habitat (W.R. Q. Luke, pers. obs.) and is regularly consumed by cattle as an important fodder during dry periods (Odadi et al. 2013). However, in some parts of its range it is threatened by widespread habitat loss through conversion to commercial pastoral agriculture and the global population is considered to be declining. This species has, therefore, recently been provisionally assessed as Endangered (ENB1ab(ii,iii,iv)+2ab(ii,iii,iv)) by the East African Plant Red List Authority(W. R. Q. Luke et al., unpubl. data). This assessment is awaiting publicationon the IUCN Red List.
Distribution
Kenya (Laikipia and Nyeri Counties; Flora of Tropical East Africa floristic regions K3 and K4)
Ecology
This species occurs in upland grassland and open woodland, including Acacia drepanolobium Harms ex Y.Sjöstedt woodland, where it can form small mats amongst the grasses in the ground layer of the vegetation. These mats are conspicuous during the dry season, appearing green amongst the dried brown grasses (Odadi et al. 2013). It can also sometimes be found along road verges. It often grows on seasonally damp black clay soils; 1700 – 2150 m elevation.
Morphology General Habit
Procumbent or trailing perennial herb, branching widely from a small woody base and rootstock, forming small mats in the ground layer; young stems with two prominent pairs of opposite ridges and two broader opposite ridges, glabrous except for tufts of multicellular trichomes along the nodal lines
Morphology Leaves
Leaves sessile or on a poorly defined petiole to 3 mm long; blade fleshy, obovate (-elliptic), 0.8 – 1 (– 1.4) × 0.45 – 0.6 (– 0.75) cm, base cuneate, margin entire, apex obtuse or rounded, surfaces glabrous except for minute trichomes along the margin; lateral veins 3 (– 4) pairs
Morphology Reproductive morphology Flowers Androecium Stamens
Stamens with filaments 1.2 – 2.3 mm long, glabrous; anther thecae offset by 0.25 – 0.3 mm, each theca 1 – 1.5 mm long, basally muticous
Morphology Reproductive morphology Flowers Calyx
Calyx with short basal tube 0.7 – 0.8 mm long; lobes linear-lanceolate, 3.7 – 5.5 mm long, margins narrowly hyaline, ciliate, surfaces with sparse short ascending trichomes
Morphology Reproductive morphology Flowers Corolla
Corolla (13 –) 15 – 18.5 mm long, bright pink to mauve, rather densely retrorse-pubescent externally; tube (8 –) 10 – 11 mm long, 1 – 1.5 mm in diam. centrally, widening somewhat towards mouth, with scattered minute glandular trichomes on internal surface, rugula of two raised lines of trichomes on dorsal side of tube and barely extending onto upper lip; lips widely divergent, upper lip suberect, ovate or elliptic, 5 – 7 × 3 – 3.7 mm, glabrous internally, apex shortly bilobed or emarginate; lower lip pendant, 6 – 7.5 mm long, glabrous internally, lobes oblong, 2.5 – 3 × 1.4 – 1.8 mm, apices obtuse or rounded with irregular margins, median lobe slightly longer and narrower than lateral pair
Morphology Reproductive morphology Flowers Gynoecium Ovary
Ovary ± 1.5 mm long, glabrous; style ± 8.5 mm long, ± sparsely appressed-pubescent or glabrous
Morphology Reproductive morphology Flowers Pollen
Pollen prolate, 3-colporate, 6-pseudocolpate, polar diameter (P) 35 – 37 μm, equatorial diameter (E) 20 – 22.5 μm, P:E = 1.57 – 1.8, ora ± the same width as the colpi, the pseudocolpi parallel to the colpi, interaperatural exine reticulate
Morphology Reproductive morphology Fruits
Capsule 8 – 10 mm long, glabrous or with very few inconspicuous trichomes towards apex; seeds blackish at maturity, 1.3 – 1.8 mm in diameter, tuberculate, the tubercles short, rounded with minute glochidia.
Morphology Reproductive morphology Inflorescences
Inflorescences axillary, fasciculate, (1 –) 2 – 3-flowered; peduncle 0 – 3 mm long, glabrous; bracts linear-lanceolate, 5.5 – 9 mm long, green with narrow hyaline margin at least in the proximal half, ciliate with trichomes of variable length, midrib prominent abaxially, apex minutely apiculate; bracteoles resembling bracts but 5 – 8.5 mm long, more gradually narrowed towards apex, margin more conspicuously hyaline; flowers sessile
Note
The author for Rhinacanthus ndorensis has sometimes been given as Schweinf. ex Engl. (e.g. see Klopper et al. 2006: 18). This is based on Engler (1892: 394) who recorded “Rhinacanthus ndorensis Schweinf. nov. spec. msc.” then cited the proposed type specimen, which he listed as v. Höhnel 76. However, the only description provided states “Gebüschpfl.” (i.e. bushy plant), a phrase applied to multiple taxa within Engler’s work and not considered to be sufficient to constitute a description as per Article 38.1 of the Botanical Code, hence Engler (1892) did not validly publish the name R. ndorensis. A short but sufficient description was provided by Schweinfurth (1892: 858) together with the type citation, which validated the name. The general habit, of trailing stems with axillary (sub)sessile clusters of flowers, is superficially most reminiscent of trailing members of the genus Dyschoriste Nees which is distantly related, in tribe Ruellieae of Acanthaceae (Tripp et al. 2013). Indeed, both Mildbraed (1926) and Agnew (2013) remark upon this potential confusion. However, Dyschoriste is easily separated from Kenyacanthus in, amongst other differences, having a markedly tubular calyx, an androecium comprising 4 fertile stamens or 2 fertile stamens + 2 staminodes, left-contorted corolla aestivation and seeds with hygroscopic trichomes.
Phenology
From the limited information available, mainly derived from specimen data, this species appears to have a prolonged flowering season, recorded from early November through to late July. This spans the period of the two rains — the first rains occur primarily in October and November whilst the peak rains fall in April to May. The intervening period is dry, with January being the driest month.

Native to:

Kenya

Kenyacanthus ndorensis (Schweinf.) I.Darbysh. & Kiel appears in other Kew resources:

First published in Kew Bull. 74(3)-39: 16 (2019)

Accepted by

  • Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. (2021). The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. https://doi.org/10.1038/s41597-021-00997-6 Scientific Data 8: 215.

Literature

Kew Bulletin

  • Agnew, A. D. Q. (2013). Upland Kenya Wild Flowers and Ferns. Third Edition. Nature Kenya — the East African Natural History Society, Nairobi.
  • Akaike, H. (1974). Automatic control: A new look at the statistical model identification. IEEE T. Biomed. Eng. 19: 716 – 723.
  • Bachman, S., Moat, J., Hill, A. W., de la Torre, J. & Scott, B. (2011). Supporting red list threat assessments with GeoCAT: Geospatial conservation assessment tool. ZooKeys 150: 117 – 126.
  • Balkwill, K. & Welman, W. G. (2000). Acanthaceae. In: O. A. Leistner (ed), Seed Plants of Southern Africa: Families and Genera. Strelitzia 10, 34 – 45. National Botanical Institute, Pretoria.
  • Balkwill, K., Getliffe-Norris, F. & Balkwill, M.-J. (1996). Systematic studies in the Acanthaceae; Dicliptera in southern Africa. Kew Bull. 51: 1 – 61.
  • Cable, S. & Cheek, M. (1998). The Plants of Mount Cameroon. A Conservation Checklist. Royal Botanic Gardens, Kew.
  • Champluvier, D. & Darbyshire, I. (2009). A revision of the genera Brachystephanus and Oreacanthus (Acanthaceae) in tropical Africa. Syst. Geogr. Pl. 79: 115 – 192.
  • Cheek, M., Pollard, B. J., Darbyshire, I., Wild, C. & Onana, J.-M. (2004). The Plants of Mwanenguba, Mt Kupe and the Bakossi Mts, Cameroon. A Conservation Checklist. Royal Botanic Gardens, Kew.
  • Clarke, C. B. (1900a). Schaueria. In: W. T. Thiselton-Dyer (ed.), Flora of Tropical Africa, Vol. 5: 242. L. Reeve & Co., London.
  • Clarke, C. B. (1900b). Chlamydocardia. In: W. T. Thiselton-Dyer (ed.), Flora of Tropical Africa, Vol. 5: 234 – 235. L. Reeve & Co, London.
  • Côrtes, A. L. A., Daniel, T. F. & Rapini, A. (2016). Taxonomic revision of the genus Schaueria (Acanthaceae). Pl. Syst. Evol. 302: 819 – 851.
  • Daniel, T. F. & Figueiredo, E. (2009). The California Academy of Sciences Gulf of Guinea Expeditions (2001, 2006, 2008). VII. Acanthaceae of São Tomé and Príncipe. Proc. Calif. Acad. Sci. Ser. 4(60): 623 – 674.
  • Daniel, T. F. (1995a). Revision of Odontonema (Acanthaceae) in Mexico. Contr. Univ. Michigan Herb. 20: 147 – 171.
  • Daniel, T. F. (1995b). Acanthaceae. In: D. E. Breedlove (ed.), Flora of Chiapas, Pt. 4. The California Academy of Sciences, San Francisco.
  • Daniel, T. F. (2009). Synopsis of Dicliptera (Acanthaceae) in the Nueva Galicia Region of Western Mexico with a new species, D. novogaliciana. Proc. Calif. Acad. Sci. Ser. 4(60): 1 – 18.
  • Daniel, T. F. (2015). Odontonema aliciae, a new heterostylous species of Acanthaceae from Panama. Proc. Calif. Acad. Sci. Ser. 4(62): 25 – 30.
  • Daniel, T. F. (2017). New and reconsidered Mexican Acanthaceae XII. Proc. Calif. Acad. Sci. 64: 131 – 154.
  • Daniel, T. F., McDade, L. A., Manktelow, M. & Kiel, C. A. (2008). The “Tetramerium Lineage” (Acanthaceae: Acanthoideae: Justicieae): Delimitation and intra-lineage relationships based on cp and nrlTS sequence data. Syst. Bot. 33: 416 – 436.
  • Darbyshire, I. & Govaerts, R. (2017). A synopsis of Chlamydocardia (Acanthaceae) including Linocalix. Kew Bull. 72: 37 (5 pages).
  • Darbyshire, I. & Goyder, D. J. (2019). Notes on Justicia sect. Monechma (Acanthaceae) in Angola, including two new species. Blumea 64: 97 – 107.  https://doi.org/10.3767/blumea.2019.64.02.01.
  • Darbyshire, I. & Harris, T. (2006). Notes on the genus Rhinacanthus (Acanthaceae) in Africa with a synopsis of the R. nasutus-R. gracilis complex and a key to the African members of the genus. Kew Bull. 61: 401 – 418.
  • Darbyshire, I. & Vollesen, K. (2007). The transfer of the genus Peristrophe to Dicliptera (Acanthaceae) with a new species described from eastern Africa. Kew Bull. 62: 119 – 128.
  • Darbyshire, I. (2009). Notes on the genus Dicliptera (Acanthaceae) in Eastern Africa. Kew Bull. 63: 361 – 383.
  • Darbyshire, I., Nanyeni, L., Chase, F. M. & Gonçalves, F. M. P. (2018). A synopsis of Rhinacanthus (Acanthaceae) in Angola and Namibia. Kew Bull. 73: 21 (12 pages).
  • Darbyshire, I., Pearce, L. & Banks, H. (2012). The genus Isoglossa (Acanthaceae) in west Africa. Kew Bull. 66: 425 – 439.
  • Darbyshire, I., Vollesen, K. & Ensermu Kelbessa. (2010). Acanthaceae (Part 2). In: H. J. Beentje (ed.), Flora of Tropical East Africa. Royal Botanic Gardens, Kew.
  • Darriba, D., Taboada, G. L. & Posada, D. (2012). JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9: 772.
  • Doyle, J. J. & Doyle, J. L. (1987). A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19: 11 – 15.
  • Engler, A. (1892). Über die Hochgebirgsflora des tropischen Afrika. Abh. Königl. Akad. Wiss. Berlin 1891, Abh. II: 1 – 461.
  • Ensermu Kelbessa. (2003). Two new species of Acanthaceae from NE tropical Africa and Arabia. Kew Bull. 58: 703 – 712.
  • Figueiredo, E. & Keith-Lucas, M. (1996). Pollen morphology of Brachystephanus (Acanthaceae-Justicieae). Grana 35: 65 – 73.
  • Graham, V. A. W. (1988). Delimitation and infrageneric classification of Justicia (Acanthaceae). Kew Bull. 43: 551 – 624.
  • Hansen, B. (1992). The genus Ptyssiglottis (Acanthaceae). A taxonomic monograph. Opera Bot. 116: 1 – 58.
  • Heine, H. (1963). Acanthaceae. In: F. N. Hepper (ed.), Flora of West Tropical Africa, Ed. 2, Vol. 2: 391 – 432. The Crown Agents for Overseas Governments and Administrations, London.
  • Heine, H. (1966). Acanthacées. In: A. Aubreville (ed.), Flore du Gabon, Vol. 13: 3 – 250. Museum National d’Histoire Naturelle, Paris.
  • Huelsenbeck, J. P. & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754 – 755.
  • Huelsenbeck, J. P. & Ronquist, F., & Hall, B. (2001). MrBayes: A program for Bayesian inference of phylogeny. Manual. http://morphbank.ebc.uu.se/mrbayes/manual.php.
  • Hutchinson, J. & Dalziel, J. M. (1931). Flora of West Tropical Africa. Vol. 2, Pt. 1. The Crown Agents for the Colonies, London.
  • IUCN (2012). IUCN Red List Categories and Criteria. Version 3.1. Second Edition. IUCN Species Survival Commission, Gland & Cambridge.
  • Kiel, C. A., Daniel, T. F., Darbyshire, I. & McDade, L. A. (2017). Unraveling relationships in the morphologically diverse and taxonomically challenging ‘justicioid’ lineage (Acanthaceae). Taxon 66: 645 – 675.
  • Kiel, C. A., McDade, L. A., Daniel, T. F. & Champluvier, D. (2006). Phylogenetic delimitation of Isoglossinae (Acanthaceae: Justicieae) and relationships among constituent genera. Taxon 55: 683 – 694.
  • Klopper, R. R., Chatelain, C., Bänninger, V., Habashi, C., Steyn, H. M., de Wet, B. C., Arnold, T. H., Gautier, L., Smith, G. E. & Spichiger, R. (2006). Checklist of the flowering plants of sub-Saharan Africa. An index of accepted names and synonyms. South African Botanical Diversity Network Report No. 42, SABONET, Pretoria.
  • Lebrun, J. P. & Stork, A. L. (1997). Énumération des plantes à fleurs d’Afrique Tropicale. IV Gamopétales: Ericaceae à Lamiaceae. Conservatoire et Jardin Botaniques de la ville de Genève.
  • McDade, L. A., Daniel, T. F. & Kiel, C. A. (2008). Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae s.l. (Lamiales). Amer. J. Bot. 95: 1136 – 1152.
  • McDade, L. A., Daniel, T. F. & Kiel, C. A. (2018). The Tetramerium Lineage (Acanthaceae, Justicieae) revisited: phylogenetic relationships reveal polyphyly of many New World genera accompanied by rampant evolution of floral morphology. Syst. Bot. 43: 97 – 116.
  • McDade, L. A., Daniel, T. F., Masta, S. E. & Riley, K. M. (2000). Phylogenetic relationships within the Tribe Justicieae (Acanthaceae): evidence from molecular sequences, morphology, and cytology. Ann. Missouri Bot. Gard. 87: 435 – 458.
  • Mildbraed, J. (1926). Acanthaceae. In: R. E. Fries & T. C. E. Fries, Beiträge zur kenntnis der flora des Kenia, Mt Aberdare und Mt Elgon. VIII. Notizbl. Bot. Gart. Berlin-Dahlem 9: 485 – 522.
  • Morgan, D. R. & Soltis, D. E. (1993). Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann. Missouri Bot. Gard. 80: 631 – 660.
  • Nees, C. G. (1839). Acanthaceae. In: H. R. Goeppert, J. K. Schauer & J. C. Schauer (eds), Delectus Seminum in Horto Botanico Vratislaviensi Collectorum, pp. 1 – 3. Postmark, Breslau.
  • Odadi, W. O., Karachi, M. K., Abdulrazak, S. A. & Young, T. P. (2013). Protein supplementation reduces non-grass foraging by a primary grazer. Ecol. Appl. 23: 455 – 463.
  • Onana, J. M. (2011). The vascular plants of Cameroon. A taxonomic checklist with IUCN assessments. Flore du Cameroun Vol. 39 “occasional volume”. IRAD National Herbarium of Cameroon, Yaoundé.Google Scholar
  • Onana, J. M. (2013). Synopsis de especès végétales vasculaires endémiques et rares du Cameroun. Check-liste pour la gestation durable et la conservation de la biodiversité. In: J. M. Onana (ed.), Flore du Cameroun, Vol. 40. Ministère de la Recherche Scientifique et de l’Innovation (MINRESI), Yaoundé.
  • Posada, D. & Crandall, K. A. (2001). Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50: 580 – 601.
  • Posada, D. (2008). JModelTest: Phylogenetic model averaging. Molec. Biol. Evol. 25: 1253 – 1256.
  • Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. (2014). Tracer v. 1.6. http://beast.bio.ed.ac.uk/Tracer.
  • Ronquist, F. & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572 – 1574.
  • Schwartz, O. (1939). Flora des tropischen Arabien. Mitt. Inst. Allg. Bot. Hamburg 10: 1 – 393.
  • Schweinfurth, G. (1892). Phanerogamen. In: Appendix II, Aufzählung der wissenshcaftlichen Ergebnisse der Expedition, pp. 852 – 868. In: L. R. von Höhnel, Zum Rudolph-see und Stephanie-see. A. Hölder, Vienna.
  • Schweinfurth, G. (1894). Phanerogams. In: Appendix II, Abstract of the scientific results of the Expedition, pp. 350 – 368. In: L. von Höhnel, Discovery of lakes Rudolf and Stefanie: a narrative of Count Samuel Teleki’s exploring and hunting expedition in eastern equatorial Africa in 1887 and 1888. Vol. 2. Longmans, Green & co., London.
  • Sosef, M. S. M. (2006). Acanthaceae. In: M. S. M. Sosef et al. (eds), Check-list des plantes vasculaires du Gabon / Checklist of Gabonese vascular plants. Scripta Bot. Belg. 35: 35 – 43.
  • Sosef, M. S. M., Dauby, G., Blach-Overgaard, A., van der Burgt, X., Catarino, L., Damen, T., Deblauwe, V., Dessein, S., Dransfield, J., Droissart, V., Duarte, M. C., Engledow, H., Fadeur, G., Figueira, R., Gereau, R. E., Hardy, O. J., Harris, D. J., de Heij, J., Janssens, S., Klomberg, Y., Ley, A. C., Mackinder, B. A., Meerts, P., van de Poe, J. L., Sonké, B., Stévart, T., Stoffelen, P., Svenning, J.-C., Sepulchre, P., Zaiss, R., Wieringa, J. J. & Couvreur, T. L. P. (2017). Exploring the floristic diversity of tropical Africa. BMC Biology 15: 15.
  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312 – 1313.
  • Thiers, B. (2019) Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/science/ih/. Last accessed 25 Jan. 2019.
  • Tripp, E. A., Daniel, T. F., Fatimah, S. & McDade, L. A. (2013). Phylogenetic relationships within Ruellieae (Acanthaceae), and a revised classification. Int. J. Plant Sci. 174: 97 – 137.

Kew Backbone Distributions

  • Darbyshire, I., Vollesen, K. & Kelbessa, E. (2010). Flora of Tropical East Africa, Acanthaceae (Part 2): 287-756.

Kew Backbone Distributions
The International Plant Names Index and World Checklist of Selected Plant Families 2021. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
© Copyright 2017 World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0

Kew Bulletin
Kew Bulletin
http://creativecommons.org/licenses/by-nc-sa/3.0

Kew Names and Taxonomic Backbone
The International Plant Names Index and World Checklist of Selected Plant Families 2021. Published on the Internet at http://www.ipni.org and http://apps.kew.org/wcsp/
© Copyright 2017 International Plant Names Index and World Checklist of Selected Plant Families. http://creativecommons.org/licenses/by/3.0