Victoria cruziana A.D.Orb.

First published in Ann. Sci. Nat., Bot., sér. 2, 13: 57 (1840)
This species is accepted
The native range of this species is W. Central Brazil to NE. Argentina. It is a hydroperennial and grows primarily in the subtropical biome.


Native to:

Argentina Northeast, Brazil West-Central, Paraguay


Homotypic Synonyms

Heterotypic Synonyms


Kew's Tree of Life Explorer

Discover the flowering plant tree of life and the genomic data used to build it.

View the Tree of Life

POWO follows these authorities in accepting this name:

  • Zuloaga, F.O., Morrone, O. , Belgrano, M.J., Marticorena, C. & Marchesi, E. (eds.) (2008). Catálogo de las Plantas Vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden 107: 1-3348. Missouri Botanical Garden.

Kew Species Profiles

  • Conard, H. S. (1905, reprinted 1991). The Waterlilies: a Monograph of the Genus Nymphaea. Lark Publications, Bury St Edmunds, UK.
  • Huxley, A., Griffiths, M. & Levy, M. (eds) (1999). The New Royal Horticultural Society Dictionary of Gardening. Volume 4 (R to Z). Macmillan Reference, London.
  • Mabberley, D. J. (2008). Mabberley’s Plant-book: a Portable Dictionary of Plants, their Classification and Uses. 3rd Edition. Cambridge University Press, Cambridge, UK.
  • Victoria Adventure (2013). (Accessed 07 March 2012).

Kew Backbone Distributions

  • Forzza, R.C., Zappi, D. & Souza, V.C. (2016-continuously updated). Flora do Brasil 2020 em construção
  • Zuloaga, F.O., Morrone, O. , Belgrano, M.J., Marticorena, C. & Marchesi, E. (eds.) (2008). Catálogo de las Plantas Vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden 107: 1-3348. Missouri Botanical Garden.

Frontiers in Plant Science

  • Ani´sko, T. (2014). Victoria the Seductress. La Jolla, CA: Beckon Books, 468.
  • Antonelli, A., Nylander, J. A., Persson, C., and Sanmartín, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc. Natl. Acad. Sci. U.S.A. 106, 9749–9754. doi: 10.1073/pnas.0811421106
  • Arbo, M. M., Lopez, G., Schinini, A., and Pieszko, G. (2002). “Las plantas hidrófilas,” in Flora del Iberá, eds M. M. Arbo and S. G. Tressins (Corrientes: EUDENE), 9–10.
  • Archangeli, G. (1908). Studi sulli Victoria regia Lindl. Atti della Società toscana di scienze Botany, residente in Pisa. Memorie 24, 59–78.
  • Bachman, S., Moat, J., Hill, A. W., De La Torre, J., and Scott, B. (2011). Supporting red list threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150:117. doi: 10.3897/zookeys.150.2109
  • Beck, S. G. (1983). Vegetationsoekologische Grundlagen der Viehwirtschaft in den Ueberschwemmungs-Savannen des Rio Yacuma (departamento Beni, Bolivien) Dissertationes Botanicae Bd. Vaduz: J. Cramer, 186.
  • Beck, S. G. (1984). Comunidades vegetales de las sabanas inundadizas en el NE de Bolivia. Phytocoenologia 12, 321–350. doi: 10.1127/phyto/12/1984/321
  • Beck, S. G., and Moraes, M. (1997). “Llanos de Mojos Region - Bolivia,” in “Centres of Plant Diversity. A Guide and Strategy for Their Conservation, ed. S. D. Davis, V.H. Heywood and A.C. Hamilton (Cambridge: IUCN Publications Unit).
  • Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10. 1093/bioinformatics/btu170
  • Borsch, T., Löhne, C., and Wiersema, J. (2008). Phylogeny and evolutionary patterns in Nymphaeales: integrating genes, genomes and morphology. Taxon 57, 1052E–1054E. doi: 10.1002/tax.574004
  • Borsch, T., Wiersema, J. H., Hellquist, C. B., Löhne, C., and Govers, K. (2014). Speciation in North American water lilies: evidence for the hybrid origin of the newly discovered Canadian endemic Nymphaea loriana sp. Nov.(Nymphaeaceae) in a past contact zone. Botany 92, 867–882. doi: 10.1139/ cjb-2014-0060
  • Bortolotto, I. M., de Mello Amorozo, M. C., Neto, G. G., Oldeland, J., and Damasceno-Junior, G. A. (2015). Knowledge and use of wild edible plants in rural communities along Paraguay River, Pantanal, Brazil. J. Ethnobiol. Ethnomed. 11:46. doi: 10.1186/s13002-015-0026-2
  • Box, F., Erlich, A., Guan, J. H., and Thorogood, C. (2022). Gigantic floating leaves occupy a large surface area at an economical material cost. Sci. Adv. 8:eabg3790. doi: 10.1126/sciadv.abg3790
  • Byrne, D. (2008). In search of the dwarf Victoria. Water Garden J. 23, 11–14.
  • Caivano, V., and Calatrava, A. (2021). Drought Hits South America River, Threatening Vast Ecosystem. Climate and Environment. Toronto, ON: CTV News.
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., et al. (2009). BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi: 10.1186/1471-2105-10-421
  • Comisión Nacional de Actividades Espaciales (2021). Los Satélites Argentinos SAOCOM Monitorean la Bajante del Río Paraná. Ministerio de Ciencia, Tecnología e Innovación. Buenos Aires, AC: Comisión Nacional de Actividades Espaciales.
  • Cowgill, U. M., and Prance, G. T. (1989). A comparison of the chemical composition of injured leaves in contrast to uninjured leaves of Victoria amazonica (Nymphaeaceae). Ann. Bot. 64, 697–706. doi: 10.1093/oxfordjournals.aob.a087896
  • Crovetto, R. N. M. (2012). Estudios etnobotánicos V. Nombres de plantas y su utilidad según los Mbya Guaraní de Misiones, Argentina. Bonplandia 21, 109–133. doi: 10.30972/bon.2121282
  • Darling, A. C., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403. doi: 10.1101/gr.2289704
  • Dastpak, A., Osaloo, S. K., Maassoumi, A. A., and Safar, K. N. (2018). Molecular phylogeny of Astragalus sect. Ammodendron (Fabaceae) inferred from chloroplast ycf1 gene. Ann. Bot. Fennici 55, 75–82. doi: 10.5735/085.055. 0108
  • Decker, J. S. (1936). Aspectos Biológicos da Flora Brasilieira. São Leopoldo: BR Rotermund & Co, 640. doi: 10.5962/bhl.title.99988
  • Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., et al. (2015). ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5:8348. doi: 10.1038/ srep08348
  • Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.
  • Drescher, A., Ruf, S., Calsa, T. Jr., Carrer, H., and Bock, R. (2000). The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22, 97–104. doi: 10.1046/j.1365-313x.2000.00722.x
  • Drummond, A. J., and Bouckaert, R. R. (2015). Bayesian Evolutionary Analysis with BEAST. Cambridge: Cambridge University Press. doi: 10.1017/ CBO9781139095112
  • Durand, E. Y., Patterson, N., Reich, D., and Slatkin, M. (2011). Testing for ancient admixture between closely related populations. Mol. Biol. Evolut. 28, 2239–2252. doi: 10.1093/molbev/msr048
  • Figueiredo, J., Hoorn, C., van der Ven, P., and Soares, E. (2009). Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology 37, 619–622. doi: 10.1130/G25567A.1
  • Filipowicz, N., and Renner, S. S. (2012). Brunfelsia (Solanaceae): a genus evenly divided between South America and radiations on Cuba and other Antillean islands. Mol. Phylogenet. Evolut. 64, 1–11. doi: 10.1016/j.ympev.2012.02.026
  • Freudenstein, J. V., Broe, M. B., Folk, R. A., and Sinn, B. T. (2017). Biodiversity and the species concept—lineages are not enough. Systemat. Biol. 66, 644–656. doi: 10.1093/sysbio/syw098
  • Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152. doi: 10.1093/bioinformatics/bts565
  • Gandolfo, M. A., Nixon, K. C., and Crepet, W. L. (2004). Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms. Proc. Natl. Acad. Sci. U.S.A. 101, 8056–8060. doi: 10.1073/pnas.0402473101
  • Gaut, B. S., Muse, S. V., Clark, W. D., and Clegg, M. T. (1992). Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J. Mol. Evolut. 35, 292–303. doi: 10.1007/BF00161167
  • Gickelhorn, R. (1966). Thaddäus Haenkes Reisen und Arbeiten in Südamerika nach Dokumentarforschungen in Spanischen Archiven. Wiesbaden: Franz Steiner Verlag.
  • GoogleEarth (2022). The World’s Most Detailed Globe. Available Online at https: // (accessed June 16, 2022)
  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. doi: 10.1038/nbt.1883
  • Gray, J. E. (1837). Description of Victoria Regina J.E. Gray. Magaz. Zool. Bot. 2, 440–442.
  • Gruenstaeudl, M., Nauheimer, L., and Borsch, T. (2017). Plastid genome structure and phylogenomics of Nymphaeales: conserved gene order and new insights into relationships. Plant Systemat. Evolut. 303, 1251–1270. doi: 10.1007/s00606- 017-1436-5
  • Gutiérrez, P. A. G., Köhler, E., and Borsch, T. (2011). New species of Buxus (Buxaceae) from northeastern Cuba based on morphological and molecular characters, including some comments on molecular diagnosis. Willdenowia 43, 125–137. doi: 10.3372/wi.43.43115
  • Hanagarth, W. (1993). Acerca de la Geoecologia de las Sabanas del Beni en el Noreste de Bolivia. La Paz: Instituto de Ecologia.
  • He, D., Gichira, A. W., Li, Z., Nzei, J. M., Guo, Y., Wang, Q., et al. (2018). Intergeneric relationships within the early-diverging angiosperm family Nymphaeaceae based on chloroplast phylogenomics. Int. J. Mol. Sci.19:3780. doi: 10.3390/ijms19123780
  • Holway, T. (2013). The Flower of Empire: The Ama’on’s Largest Water Lily, the Quest to Make it Bloom, and the World it Helped Create. Oxford: Oxford University Press.
  • Hooker, W. J. (1847). Victoria regia. Curtis Bot. Magaz. 73, 4275–4278.
  • Hoorn, C., Boschman, L. M., Kukla, T., Sciumbata, M., and Val, P. (2022). The Miocene wetland of western Amazonia and its role in Neotropical biogeography. Bot. J. Lin. Soc. 199, 25–35. doi: 10.1093/botlinnean/boab098
  • Hoorn, C., Wesselingh, F. P., Ter Steege, H., Bermudez, M. A., Mora, A., and Sevink, J. (2010). Amazonia through time: andean uplift, climate change, landscape evolution, andbiodiversity. Science 330, 927–931. doi: 10.1126/ science.1194585
  • Hurrell, J. A., Puentes, J. P., and Arenas, P. M. (2016). Estudios etnobotánicos en la conurbación Buenos Aires-La Plata, Argentina: productos de plantas medicinales introducidos por inmigrantes paraguayos. Bonplandia 25, 43–52. doi: 10.30972/bon.2511270
  • Hutukara Associação Yanomami, and Associação Wanasseduume Ye’kwana (2020). Scars in the Forest – The Growth of Illegal Mining in the Yanomami Indigenous Territory (YIL) in 2020. Report. Available Online at: avancou-30-na-terra-indigena-yanomami-aponta-relatorio/            (accessed October 20, 2021)
  • IUCN (2001). IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission. Gland: IUCN.
  • IUCN Standards and Petitions Committee (2019). Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Gland: IUCN Standards and Petitions Committee.
  • Ibañez Montoya, M. V. (1984). Trabajos Científicos y Correspondencia de Tadeo Haenke. La Expedicion Malaspina 1789-1794, Tomo IV. Madrid: Lunwerg Editores.
  • Ikabanga, D. U., Stevart, T., Koffi, K. G., Monthe, F. K., Doubindou, E. C. N., Dauby, G., et al. (2017). Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa 321, 166–180. doi: 10.11646/phytotaxa.321. 2.2
  • Jacobs, S. W., and Hellquist, C. B. (2011). New species, possible hybrids and intergrades in Australian Nymphaea (Nymphaeaceae) with a key to all species. Telopea 13, 233–243. doi: 10.7751/telopea20116016
  • Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., DePamphilis, C. W., Yi, T. S., et al. (2020). GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21:241. doi: 10.1186/s13059-020-02 154-5
  • Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. doi: 10.1093/bioinformatics/bts199
  • Kinnup, V. F., and Lorenzi, H. (2014). “Unconventional food plants (PANC) in Brazil: identification guide, nutritional aspects and illustrated recipes,” in 7th Brazilian Conference on Natural Product/ XXXIII RESEM Proceedings (Sao Paulo), 2014.
  • Knoch, E. (1899). Untersuchungen über die morphologie, biologie und physiologie der blüte von Victoria regia. Bibl. Bot. 47, 1–60.
  • Korneliussen, T. S., Albrechtsen, A., and Nielsen, R. (2014). ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15:356. doi: 10.1186/ s12859-014-0356-4
  • Lamprecht, I., Schmolz, E., Blanco, L., and Romero, C. M. (2002). Energy metabolism of the thermogenic tropical water lily, Victoria cruziana. Thermochim. Acta 394, 191–204. doi: 10.1016/S0040-6031(02)00250-2
  • Langstroth Plotkin, R. (2012). Biogeography of the Llanos de Moxos: natural and anthropogenic determinants. Geographica Helvetica 66, 183–192. doi: 10.5194/ gh-66-183-2011
  • Latorre, S. M., Lang, P. L., Burbano, H. A., and Gutaker, R. M. (2020). Isolation, library preparation, and bioinformatic analysis of historical and ancient plant DNA. Curr. Protoc. Plant Biol. 5:e20121. doi: 10.1002/cppb.20121
  • Lavin, L., and Pennington, R. T. (in press). “Non-monophyletic species are common in plants,” in Cryptic Species: Morphological Stasis, Circumscription, and Hidden Diversity, eds A. K. Monro and S. J. Mayo (Cambridge: Cambridge University Press).
  • Les, D. H., Schneider, E. L., Padgett, D. J., Soltis, P. S., Soltis, D. E., and Zanis, M. (1999). Phylogeny, classification and floral evolution of water lilies (Nymphaeaceae; Nymphaeales): a synthesis of non- molecular, rbcL, matK, and 18S rDNA data. Systemat. Bot. 24, 28–46. doi: 10.2307/2419384
  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078– 2079. doi: 10.1093/bioinformatics/btp352
  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. doi: 10.1093/ bioinformatics/btp324
  • Lindley, J. (1837). Victoria regia. 1–5.
  • Lissambou, B. J., Couvreur, T. L., Atteke, C., Stévart, T., Piñeiro, R., Dauby, G., et al. (2019). Species delimitation in the genus Greenwayodendron based on morphological and genetic markers reveals new species. Taxon 68, 442–454. doi: 10.1002/tax.12064
  • Loureiro, J., Rodriguez, E., Doležel, J., and Santos, C. (2007). Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888. doi: 10.1093/aob/mcm152
  • Löhne, C., Borsch, T., and Wiersema, J. H. (2007). Phylogenetic analysis of Nymphaeales using fast- evolving and noncoding chloroplast markers. Bot. J. Linn. Soc. 154, 141–163. doi: 10.1111/j.1095-8339.2007.00659.x
  • Malme, G. O. A. (1907). Nagra anteckningar om Victoria Lindl., Sarskildt om Victoria cruziana D’Orb. Acta Horti Berg. 4, 3–16.
  • MapBiomas (2021). MapBiomas Project- Collection Cobertura of the Annual Series of Land Use and Land Cover Maps of Brazil. Available online at: https:// (accessed October 20, 2021).
  • Marengo, J. A., Cunha, A. P., Cuartas, L. A., Deusdara Leal, K. R., Broedel, E., Seluchi, M. E., et al. (2021). Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3:639204. doi: 10.3389/frwa.2021.639204
  • Mayo, S. J. (in press). “Cryptic species: a product of the paradigm difference between taxonomic and evolutionary species,” in Cryptic Species: Morphological Stasis, Circumscription, and Hidden Diversity, eds A. K. Monro and S. J. Mayo (Cambridge: Cambridge University Press).
  • McAlvay, A. C., Armstrong, C. G., Baker, J., Elk, L. B., Bosco, S., Hanazaki, N., et al. (2021). Ethnobiology phase VI: decolonizing institutions, projects, and scholarship. J. Ethnobiol. 41, 170–191. doi: 10.2993/0278-0771-41.2.170
  • Meisner, J., and Albrechtsen, A. (2018). Inferring population structure and admixture proportions in low-depth NGS data. Genetics 210, 719–731. doi: 10.1534/genetics.118.301336
  • Mercado, J. (2021). Tras el dorado. Crónicas de la explotación del oro en la Amazonía. Cochabamba: La Libre.
  • Mereles, F., Céspedes, G., Soria, N., and de Arrúa, R. D. (2020). La importancia del trabajo botánico de Aimé Bonpland en Sudamérica y la incógnita de las colecciones botánicas realizadas en Paraguay. Bonplandia 29, 127–140. doi: 10.30972/bon.2924429
  • Monro, A. K. (in press). “Introduction,” in Cryptic Species: Morphological Stasis, Circumscription, and Hidden Diversity, eds A. K. Monro and S. J. Mayo (Cambridge: Cambridge University Press).
  • Morales-Briones, D. F., Kadereit, G., Tefarikis, D. T., Moore, M. J., Smith, S. A., Brockington, S. F., et al. (2021). Disentangling sources of gene tree discordance in phylogenomic data sets: testing ancient hybridizations in Amaranthaceae sl. Systemat. Biol. 70, 219–235. doi: 10.1093/sysbio/sya a066
  • NASA (2021). Earth Observatory. Deforestation. Washington, DC: NASA.
  • Neubig, K. M., Whitten, W. M., Carlsward, B. S., Blanco, M. A., Endara, L., Williams, N. H., et al. (2009). Phylogenetic utility of ycf 1 in orchids: a plastid gene more variable than mat K. Plant Systemat. Evolut. 277, 75–84. doi: 10.1007/ s00606-008-0105-0
  • Obermayer, R., Leitch, I. J., Hanson, L., and Bennett, M. D. (2002). Nuclear DNA C-values in 30 species double the familial representation in pteridophytes. Ann. Bot. 90, 209–217. doi: 10.1093/aob/mcf167
  • Ogilvie, H. A., Bouckaert, R. R., and Drummond, A. J. (2017). StarBEAST2 brings faster species tree inference and accurate estimates of substitution rates. Mol. Biol. Evolut. 34, 2101–2114. doi: 10.1093/molbev/msx126
  • Opitz, D. L. (2013). The sceptre of her pow’r’: numphs, nobility, and nomenclature in early Victoria science. Br. Soc. Hist. Sci. 6–94. doi: 10.1017/ S0007087413000319
  • Padial, J. M., and De la Riva, I. (2021). A paradigm shift in our view of species drives current trends in biological classification. Biol. Rev. 96, 731–751. doi: 10.1111/brv.12676
  • Pellegrini, M. O. O. (2020). Nymphaeaceae, Flora do Brasil. Rio de Janeiro: Jardim Botânico do Rio de Janeiro.
  • Pellicer, J., Garcia, S., Garnatje, T., Hidalgo, O., Korobkov, A. A., Dariimaa, S., et al. (2007). Chromosome counts in Asian Artemisia L.(Asteraceae) species: from diploids to the first report of the highest polyploid in the genus. Bot. J. Linn. Soc. 153, 301–310. doi: 10.1111/j.1095-8339.2007.00611.x
  • Pellicer, J., Kelly, L. J., Magdalena, C., and Leitch, I. J. (2013). Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56, 437–449. doi: 10.1139/gen-2013-0039
  • Pirie, M. D. (2015). Phylogenies from concatenated data: Is the end nigh? Taxon 64, 421–423. doi: 10.12705/643.1
  • Planchon, J. E. (1850). La Victoria regia au point de vue horticole et botanique: avec des observations sur la structure et les affinités des Nymphéacées. Flore des Serres et des Jardins de l’Europe 6: 193- 224, 249–254.
  • Planchon, J. E. (1851). La Victoria regia au point de vue horticole et botanique: avec des observations sur la structure et les affinités des Nymphéacées. Flore des Serres et des Jardins de l’Europe 7: 25–29, 49–53.
  • Poeppig, E. F. (1832). Notizen aus dem Gebiete der Natur- und Heilkunde. 35, 129–136.
  • Prance, G. T. (1974). Victoria amazonica ou Victoria regia? Acta Amazonica 4:6. doi: 10.1590/1809-43921974043005
  • Prance, G. T., and Arias, J. R. (1975). A study of the Floral Biology of Victoria amazonica (Poepp.). Acta Amazonica 5, 109–132. doi: 10.1590/1809- 43921975052109
  • Pérez-Escobar, O. A., Bellot, S., Przelomska, N. A., Flowers, J. M., Nesbitt, M., Ryan, P., et al. (2021a). Molecular clocks and archeogenomics of a late period egyptian date palm leaf reveal introgression from wild relatives and add timestamps on the domestication. Mol. Biol. Evolut. 38, 4475–4492. doi: 10.1093/molbev/ msab188
  • Pérez-Escobar, O. A., Dodsworth, S., Bogarín, D., Bellot, S., Balbuena, J. A., Schley, R. J., et al. (2021b). Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. Am. J. Bot. 108, 1166–1180. doi: 10.1002/ajb2.1702
  • Renner, S. S. (2016). A return to Linnaeus’s focus on diagnosis, not description: the use of DNA characters in the formal naming of species. Systemat. Biol. 65, 1085–1095. doi: 10.1093/sysbio/syw032
  • Robson, D. B., Wiersema, J. H., Hellquist, C. B., and Borsch, T. (2016). Distribution and ecology of a New Species of Water-lily, Nymphaea loriana (Nymphaeaceae), in Western Canada. Can. Field Nat. 130, 25–31. doi: 10.22621/ cfn.v130i1.1787
  • Rodríguez-Rodríguez, P., de Paz, P. L. P., and Sosa, P. A. (2018). Species delimitation and conservation genetics of the Canarian endemic Bethencourtia (Asteraceae). Genetica 146, 199–210. doi: 10.1007/s10709-018-0013-3
  • Rosa-Osman, S. M., Rodrigues, R., de Mendonca, M. S., de Souza, L. A., and Piidade, M. T. F. (2011). Morfologia da flor, fruto e plantula de Victoria amazonica (Poepp.) J.C. Sowerby (Nymphaeaceae). Acta Amazon. 41, 21–28. doi: 10.1590/S0044-59672011000100003
  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., et al. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evolut. 34, 3299–3302. doi: 10.1093/ molbev/msx248
  • Rutherford, S., Rossetto, M., Bragg, J. G., McPherson, H., Benson, D., Bonser, S. P., et al. (2018). Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity 121, 126–141. doi: 10.1038/s41437-018-0073-2
  • Scarpa, G. F. (2009). Wild food plants used by the indigenous peoples of the South American Gran Chaco: a general synopsis and intercultural comparison. Angew. Bot. 83, 90–101.
  • Scarpa, G. F., and Rosso, C. N. (2014). La etnobotánica moqoit inédita de Raúl Martínez Crovetto I: Descripción, actualización y análisis de la nomenclatura indígena. Bol. Soc. Argent. Bot. 49, 623–647. doi: 10.31055/1851.2372.v49.n4. 9995
  • Schmidt, T. L., Jasper, M., Weeks, A. R., and Hoffmann, A. A. (2021). Unbiased population heterozygosity estimates from genome-wide sequence data. Methods Ecol. Evolut. 12, 1888–1898. doi: 10.1111/2041-210X.13659
  • Schneider, E. L. (1976). The floral anatomy of Victoria Schomb (Nymphaeaceae). Bot. J. Linn. Soc. 72, 115–148. doi: 10.1111/j.1095-8339.1976.tb01355.x
  • Schomburgk, R. H. (1837). Botanical society. Athenaeum 515:661.
  • Schubert, M., Lindgreen, S., and Orlando, L. (2016). AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9:88. doi: 10.1186/s13104-016-1900-2
  • Schultes, R. E. (1985). Several unpublished ethnobotanical notes of Richard Spruce. Rhodora 87, 439–441.
  • Schultes, R. E. (1990). Gifts of the amazon flora to the world. Arnoldia 50, 21–34.
  • Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., and Shephard, G. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270. doi: 10.1016/j.earscirev.2012.03.002
  • Seymour, R. S., and Mathews, P. G. D. (2006). The role of thermogenesis in the pollination biology of the amazon waterlily Victoria amazonica. Ann. Bot. 98, 1129–1135. doi: 10.1093/aob/mcl201
  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., and Zdobnov, E. M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212. doi: 10.1093/ bioinformatics/btv351
  • Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi: 10.1093/ bioinformatics/btu033
  • Stevaux, J. C., Martins, D. P., and Meurer, M. (2009). Changes in a large regulated tropical river: the Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 113, 230–238. doi: 10.1016/j.geomorph.2009.03.015
  • Swenson, J. J., Carter, C. E., Domec, J. C., and Delgado, C. I. (2011). Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports. PLoS One 6:e18875. doi: 10.1371/journal.pone.0018875
  • Templeton, A. R. (1989). “The meaning of species and speciation: a genetic perspective,” in The Units of Evolution: Essays on the Nature of Species, eds D. Otte, and J. A. Endler (Sunderland, MA: Sinauer), 159–183.
  • The Global Biodiversity Information Facility [GBIF] (2022). Free and Open Access to Biodiversity Data. Available Online at: (accessed June 16, 2022).
  • Thiers, B. (2016) Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. Available online at: (accessed May 5, 2022).
  • Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., et al. (2017). GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45, W6–W11. doi: 10.1093/nar/gkx391
  • USGS Environmental Health Program (2019). Mercury Isotope Ratios used to Determine Sources of Mercury to Fish in Northeast U.S. Streams. Reston, VA: USGS.
  • Vásquez, G. C. (2015). “Indigenous people and climate change: causes of flooding in the Bolivian Amazon and consequences for the indigenous populaton,” in Inequality and Climate Change: Perspectves from the South, ed. G. C. D. Ramos (Dakar: Council for the Development of Social Science Research in Africa (CODESRIA)), 121–136. doi: 10.2307/j.ctvh8r0w3.12
  • Warner, K. A., Rudall, P. J., and Frolich, M. W. (2008). Differentiation of perianth organs in nymphaeales. Taxon 57, 1096–1109. doi: 10.1002/tax.574006
  • Weissenborn, W. (1837). Notice respecting Victoria regalis. Magaz. Natur. Hist. J. Zool. Bot. Mineral. Geol. Meteorol. 1, 606–607.
  • Wells, T., Carruthers, T., Muñoz-Rodríguez, P., Sumadijaya, A., Wood, J. R., and Scotland, R. W. (2021). Species as a heuristic: reconciling theory and practice. Systemat. Biol. Online ahead of print, doi: 10.1093/sysbio/syab087
  • World Checklist of Vascular Plants (2022). World Checklist of Vascular Plants, Version 2.0. Kew: The Royal Botanic Gardens.
  • Xiang, Q. P., Wei, R., Zhu, Y. M., Harris, A. J., and Zhang, X. C. (2018). New infrageneric classification of Abies in light of molecular phylogeny and high diversity in western North America. J. Systemat. Evolut. 56, 562–572. doi: 10. 1111/jse.12458
  • Yang, X. F., Wang, Y. T., Chen, S. T., Li, J. K., Shen, H. T., and Guo, F. Q. (2016). PBR1 selectively controls biogenesis of photosynthetic complexes by modulating translation of the large chloroplast gene Ycf1 in Arabidopsis. Cell Discov. 2:16003. doi: 10.1038/celldisc.2016.3
  • Zhang,  L.,  Chen,  F.,  Zhang,  X.,  Li,  Z.,  Zhao,  Y.,  Lohaus,  R., et al. (2020). The water lily genome and the early evolution of flowering  plants.  Nature  577,  79–84.  doi:  10.1038/s41586-019- 1852-5
  • Zini, L. M., Galati, B. G., Gotelli, M., Zarlavcsky, G., and Ferrucci, M. S. (2019). Carpellary appendages in Nymphaea and Victoria (Nymphaeaceae): evidence of their role as osmophores based on morphology, anatomy and ultrastructure. Bot. J. Linn. Soc. 191, 421-439. doi: 10.1093/botlinnean/bo z078
  • de Lima, C. T., Machado, I. C., and Giulietti, A. M. (2021). Nymphaeaceae of Brasil. Sitientibus série Ciências Biológicas 21. doi: 10.13102/scb4986
  • de Queiroz, K. (1988). Systematics and the Darwinian revolution. Philos. Sci. 55, 238–259. doi: 10.1086/289430
  • de Queiroz, K. (1999). “The general lineage concept of species and the defining properties of the species category,” in Species, New Interdisciplinary Essays, ed.R. A. Wilson (Cambridge, MA: MIT Press).
  • de Queiroz, K. (2007). Species concepts and species delimitation. Systemat. Biol. 56, 879–886. doi: 10.1080/10635150701701083
  • d’Orbigny (1835). Voyage dans L’Amerique Meridoniale. Paris: Pitois-Levrault, 289–290.
  • d’Orbigny (1840). Annales de Sciences Naturelles. Bot. Ser. 13:57.
  • i-Terra (2021). CIAT-Terra-I. Terra-i Perú. Available online at: terra-i/data/data-terra-i_peru.html (accessed October 20, 2021)

Other Data

Other Kew resources that provide information on this taxon:

Date Reference Identified As Barcode Type Status Has image?
Zini, L.M.; et al. [15] Argentina K001625504 Yes
Zini, L.M.; et al. [15] Argentina K001625505 Yes


  • Angiosperm Extinction Risk Predictions v1

    • Angiosperm Threat Predictions
  • Frontiers in Plant Science

    • Front Plant Sci.
  • Herbarium Catalogue Specimens

    • Digital Image © Board of Trustees, RBG Kew
  • Kew Backbone Distributions

    • The International Plant Names Index and World Checklist of Vascular Plants 2024. Published on the Internet at and
    • © Copyright 2023 World Checklist of Vascular Plants.
  • Kew Living Collection Database

    • Common Names from Plants and People Africa
  • Kew Names and Taxonomic Backbone

    • The International Plant Names Index and World Checklist of Vascular Plants 2024. Published on the Internet at and
    • © Copyright 2023 International Plant Names Index and World Checklist of Vascular Plants.
  • Kew Science Photographs

    • Copyright applied to individual images
  • Kew Species Profiles

    • Kew Species Profiles